

MS Goldconda 10mm Dust (Golden Amber)

(Footpath Gravel)

Laying Instructions

Golconda 10mm – Dust is a natural "Dolomitic Limestone" of a buff/light brown colour.

With the addition of moisture, followed by compaction, a strong, durable, decorative surface can be achieved.

Suitable for footpaths, parkland, drives etc.

Preparation of site

A suitable foundation should be prepared and compacted prior to laying the Golconda i.e.

- Adequate provision for drainage of the area to be covered by ensuring

 a) Installation of drainage layer material prior to sub-base.
 b) Suitable fall away to land drains.
 This will ensure that water is not held directly in or below the Golconda.
- 2. Ground stability should be obtained by laying a granular sub-base material (MOT Type One) on top of the preformed formation layer.

Footpaths - minimum 80mm & compaction by 30cwt roller Drives - minimum 150mm & compaction by 50cwt roller

3. Construction of kerbing or similar to support the sides and steps to reduce the angle of fall on steep pathways, will all increase stability and aid the long term appearance.

Application

Minimum Depth	40mm	=	10-12 m ² per tonne
	(2"	=	12-15 yd ² per tonne)

The Golconda should be laid ensuring an "even textured appearance" is achieved and all cambers and falls are adequately formed.

Compaction should now be carried out and then if required, water may now be applied to the surface (dependent upon moisture content of material) to consolidate the material further.

The whole area should now be allowed to dry before traffic. (pedestrians are permitted to use)

PRODUCTION SPECIFICATION

Test sieve, mm	% by mass passing
20	100
0.6	10-40

TYPICAL PRODUCTION GRADING

Test sieve, mm	% by mass passing			
20	100			
14	80-100			
10	50-90			
5	25-80			
0.60	10-40			

TYPICAL PROPERTIES

(Including typical values for BS EN test methods)

Property	Typical Value	Test Method	BS EN 12620
Resistance to fragmentation (Los Angeles)	42	BS EN 1097-2	LA 50
Particle density (Saturated & surface dry)	2.57Mg/m ³	BS EN 1097-6	-
Water absorption (Saturated & surface dry)	5.1%	BS EN 1097-6	-
Water soluble sulphates (SO ₄)	0.03g/L	BS EN 1744-1	<1.9
	_		(SHW)
Acid soluble sulphates (Total SO ₄)	0.09%	BS EN 1744-1	AS _{0.2}
Water soluble chlorides	0.01g/L	BS EN 1744-1	Min value
Dry shrinkage (Typical concrete mix)	0.025%	BS EN 1367-4	<0.075
Resistance to freeze-thaw (MgSO ₄	4	BS EN 1367-2	MS18
soundness)			

Typical properties quoted in this production information sheet are based on routine production samples. However, due to the raw material's natural origin, variations in colour and physical properties can occur.